资源类型

期刊论文 9

年份

2022 1

2020 3

2019 1

2018 1

2013 1

2009 1

关键词

圈梁 1

大开间少墙单面走廊砌体结构 1

延性 1

构造柱 1

窗间墙 1

展开 ︾

检索范围:

排序: 展示方式:

Confined masonry as practical seismic construction alternative–the experience from the 2014 Cephalonia

Fillitsa KARANTONI, Stavroula PANTAZOPOULOU, Athanasios GANAS

《结构与土木工程前沿(英文)》 2018年 第12卷 第3期   页码 270-290 doi: 10.1007/s11709-017-0390-1

摘要:

During August 1953 three strong earthquakes of magnitude ranging from 6.3 to 7.2 shook the Ionian Island of Cephalonia (Kefalonia), Greece, and destroyed almost the entire building stock of the Island which consisted primarily of traditional unreinforced masonry (URM) houses. The authorities went on to restructuring of the building stock, using a structural system that is most like what is known today as confined masonry. They designed about 14 types of one- to two-storey buildings providing the engineers with detailed construction plans. These buildings are known as “Arogi” buildings (Arogi in Greek meaning Aid). On the 24th of January and 3rd of February 2014, two earthquakes of magnitude 6.1 and 6.0 struck the island, causing significant soil damages, developing excessively high ground accelerations. Surprisingly, no damage was reported in the “Arogi” buildings. The seismic behavior of the buildings is examined by FEM linear analysis and it is compared to that of URM structures. Computed results illustrate that the displacements of identical URM buildings would be about twice the magnitudes observed in the corresponding “Arogi” ones, with the implication that the earthquake sequence of 2014 would have caused critical damage should the type of structure be of the URM type. Furthermore, it is illustrated that this low cost alternative method of construction is a very effective means of producing earthquake resilient structures, whereas further reduction of seismic displacement may be achieved in the order of 50% with commensurate effects on damage potential, when reinforced slabs are used to replace the timber roofs.

关键词: Cephalonia     confined masonry     comparative FEM analysis     unreinforced masonry     seismic damage    

Seismic safety evaluation methodology for masonry building and retrofitting using splint and bandage

Pravin Kumar Venkat Rao PADALU; Yogendra SINGH

《结构与土木工程前沿(英文)》 2022年 第16卷 第4期   页码 478-505 doi: 10.1007/s11709-022-0817-1

摘要: The paper presents a seismic safety assessment of unreinforced masonry (URM) building using two approaches. The first approach uses the ‘Pier Analysis’ method, based on the concept of equivalent lateral stiffness, where in-plane and out-of-plane actions are considered independently. The second approach is developed with the program SAP2000, where the linear response is evaluated using continuum ‘finite element modelling’ (FEM). Both methods are compared to evaluate the safety of wall piers and the differences in the outcomes under combined gravitational and lateral seismic forces. The analysis results showed that few wall elements are unsafe in in-plane and out-of-plane tension. It is also observed that the pier analysis method is conservative compared to FEM, but can be used as a simplified and quick tool in design offices for safety assessment, with reasonable accuracy. To safeguard the URM wall piers under lateral loads, a retrofitting technique is adopted by providing vertical and horizontal belts called splints and bandages, respectively, using welded wire mesh (WWM) reinforcement. The study using the ‘Pier Analysis’ shows that the lateral load capacity of unsafe URM piers can be enhanced up to 3.67 times and made safe using the applied retrofitting technique. Further, the retrofitting design methodology and recommendations for application procedures to on-site URM buildings are discussed in detail.

关键词: unreinforced masonry     seismic in-plane and out-of-plane forces     pier analysis     finite element modelling     splint and bandage technique with wire mesh    

Experimental study on the compressive performance of new sandwich masonry walls

Jianzhuang XIAO, Jie PU, Yongzhong HU

《结构与土木工程前沿(英文)》 2013年 第7卷 第2期   页码 154-163 doi: 10.1007/s11709-013-0203-0

摘要: Sandwich masonry wall, namely, multi-leaf masonry wall, is widely applied as energy-saving wall since the interlayer between the two outer leaves can act as insulation layer. New types of sandwich walls keep appearing in research and application, and due to their unique connection patterns, experimental studies should be performed to investigate the mechanical behavior, especially the compressive performance. 3 new types of sandwich masonry wall were investigated in this paper, and 3 different technical measures were considered to guarantee the cooperation between the two leaves of the walls. Based on the compression tests of 13 specimens, except for some damage patterns similar with the conventional masonry walls, several new failure patterns are found due to unique connection construction details. Comparisons were made between the tested compression capacity and the theoretical one which was calculated according to the Chinese Code for Design of Masonry Structures. The results indicate that the contributions of the 3 technical measures are different. The modification coefficient ( ) was suggested to evaluate the contribution of the technical measures on the compression capacity, and then a formula was proposed to evaluate the design compression capacity of the new sandwich masonry walls.

关键词: sandwich wall     insulation wall     connection     compressive performance     compression test    

Mechanical properties characterization of different types of masonry infill walls

André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM

《结构与土木工程前沿(英文)》 2020年 第14卷 第2期   页码 411-434 doi: 10.1007/s11709-019-0602-y

摘要: It is remarkable, the recent advances concerning the development of numerical modeling frameworks to simulate the infill panels’ seismic behavior. However, there is a lack of experimental data of their mechanical properties, which are of full importance to calibrate the numerical models. The primary objective of this paper is to present an extensive experimental campaign of mechanical characterization tests of infill masonry walls made with three different types of masonry units: lightweight vertical hollow concrete blocks and hollow clay bricks. Four different types of experimental tests were carried out, namely: compression strength tests, diagonal tensile strength tests, and flexural strength tests parallel and perpendicular to the horizontal bed joints. A total amount of 80 tests were carried out and are reported in the present paper. The second objective of this study was to compare the mechanical properties of as-built and existing infill walls. The results presented and discussed herein, will be in terms of strain-stress curves and damages observed within the tests. It was observed a fragile behavior in the panels made with hollow clay horizontal bricks, without propagation of cracks. The plaster increased the flexural strength by 57%.

关键词: masonry infill walls     experimental characterization     compression strength     shear diagonal strength     flexural strength    

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

《结构与土木工程前沿(英文)》   页码 855-869 doi: 10.1007/s11709-023-0972-z

摘要: Seismic analysis of historical masonry bridges is important for authorities in all countries hosting such cultural heritage assets. The masonry arch bridge investigated in this study was built during the Roman period and is on the island of Rhodes, in Greece. Fifteen seismic records were considered and categorized as far-field, pulse-like near-field, and non-pulse-like near-field. The earthquake excitations were scaled to a target spectrum, and nonlinear time-history analyses were performed in the transverse direction. The performance levels were introduced based on the pushover curve, and the post-earthquake damage state of the bridge was examined. According to the results, pulse-like near-field events are more damaging than non-pulse-like near-field ground motions. Additionally the bridge is more vulnerable to far-field excitations than near-field events. Furthermore, the structure will suffer extensive post-earthquake damage and must be retrofitted.

关键词: masonry arch bridges     seismic behavior     modal properties     pulse-like records     nonlinear time history analysis    

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1379-1392 doi: 10.1007/s11709-019-0562-2

摘要: To date, very few researchers employed the Least Square Support Vector Machine (LSSVM) in predicting the resilient modulus ( ) of Unbound Granular Materials (UGMs). This paper focused on the development of a LSSVM model to predict the of recycled materials for pavement applications and comparison with other different models such as Regression, and Artificial Neural Network (ANN). Blends of Recycled Concrete Aggregate (RCA) with Recycled Clay Masonry (RCM) with proportions of 100/0, 90/10, 80/20, 70/30, 55/45, 40/60, 20/80, and 0/100 by the total aggregate mass were evaluated for use as UGMs. RCA/RCM materials were collected from dumps on the sides of roads around Mansoura city, Egypt. The investigated blends were evaluated experimentally by routine and advanced tests and the values were determined by Repeated Load Triaxial Test (RLTT). Regression, ANN, and LSSVM models were utilized and compared in predicting the of the investigated blends optimizing the best design model. Results showed that the ’s of the investigated RCA/RCM blends were generally increased with the decrease in RCM proportion. Statistical analyses were utilized for evaluating the performance of the developed models and the inputs sensitivity parameters. Eventually, the results approved that the LSSVM model can be used as a novel tool to estimate the of the investigated RCA/RCM blends.

关键词: Least Square Support Vector Machine     Artificial Neural Network     resilient modulus     Recycled Concrete Aggregate     Recycled Clay Masonry    

位于强震区的农村中小学教学楼砌体结构抗震设计分析

冯远,易丹,毕琼

《中国工程科学》 2009年 第11卷 第6期   页码 138-145

摘要:

针对大开间少墙砌体结构的受力特点,结合教学楼震害,分析了构造柱、圈梁对砌体结构抗震性能的影响,并对提高结构延性的设计理念进行了阐述;同时对大开间少墙单面走廊砌体结构的设计提出了几点建议。

关键词: 大开间少墙单面走廊砌体结构     构造柱     圈梁     延性     窗间墙    

Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry

Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 609-622 doi: 10.1007/s11709-020-0623-6

摘要: This paper discusses the adoption of Artificial Intelligence-based techniques to estimate seismic damage, not with the goal of replacing existing approaches, but as a mean to improve the precision of empirical methods. For such, damage data collected in the aftermath of the 1998 Azores earthquake (Portugal) is used to develop a comparative analysis between damage grades obtained resorting to a classic damage formulation and an innovative approach based on Artificial Neural Networks (ANNs). The analysis is carried out on the basis of a vulnerability index computed with a hybrid seismic vulnerability assessment methodology, which is subsequently used as input to both approaches. The results obtained are then compared with real post-earthquake damage observation and critically discussed taking into account the level of adjustment achieved by each approach. Finally, a computer routine that uses the ANN as an approximation function is developed and applied to derive a new vulnerability curve expression. In general terms, the ANN developed in this study allowed to obtain much better approximations than those achieved with the original vulnerability approach, which has revealed to be quite non-conservative. Similarly, the proposed vulnerability curve expression was found to provide a more accurate damage prediction than the traditional analytical expressions.

关键词: Artificial Neural Networks     seismic vulnerability     masonry buildings     damage estimation     vulnerability curves    

Seismic fragility assessment of revised MRT buildings considering typical construction changes

Rakesh DUMARU, Hugo RODRIGUES, Humberto VARUM

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 241-266 doi: 10.1007/s11709-019-0560-4

摘要: The present study investigates the vulnerability assessment of the prototype revised Mandatory Rule of Thumb (MRT) buildings initially designed and detailed for three storeys bare frame building; later modified through variable number of storeys (three, four, and five) and different arrangement of infill walls (bare frame, soft-storey, irregular infilled, and fully infilled). The application of infill walls increases the fundamental frequencies, stiffness, and maximum strength capacity, but reduces the deformation capability than the bare frame building. The vulnerability was also reduced through infill walls, where the probability of exceeding partial-collapse and collapse damage reduced by 80% and 50%, respectively. Furthermore, the increased in storeys (three to five) also increases the failure probability, such that partial-collapse and collapse for fully infilled increases by almost 55% and 80%, respectively. All obtained results and discussions concluded that the structural sections and details assigned for MRT building is not sufficient if considered as bare frame and soft-storey. And increase in number of storeys causes building highly vulnerable although the infill walls were considered.

关键词: mid-rise buildings     revised NBC 205: 2012     masonry infill walls     configurations of infill walls     vulnerability assessment and inter-storey drift    

标题 作者 时间 类型 操作

Confined masonry as practical seismic construction alternative–the experience from the 2014 Cephalonia

Fillitsa KARANTONI, Stavroula PANTAZOPOULOU, Athanasios GANAS

期刊论文

Seismic safety evaluation methodology for masonry building and retrofitting using splint and bandage

Pravin Kumar Venkat Rao PADALU; Yogendra SINGH

期刊论文

Experimental study on the compressive performance of new sandwich masonry walls

Jianzhuang XIAO, Jie PU, Yongzhong HU

期刊论文

Mechanical properties characterization of different types of masonry infill walls

André FURTADO, Hugo RODRIGUES, António ARÊDE, Humberto VARUM

期刊论文

Performance-based seismic assessment of a historical masonry arch bridge: Effect of pulse-like excitations

期刊论文

Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using

Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong WAN HU

期刊论文

位于强震区的农村中小学教学楼砌体结构抗震设计分析

冯远,易丹,毕琼

期刊论文

Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry

Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE

期刊论文

Seismic fragility assessment of revised MRT buildings considering typical construction changes

Rakesh DUMARU, Hugo RODRIGUES, Humberto VARUM

期刊论文